Arduino循跡自走車

蔡明智 睿揚創新科技 MCTsaione@gmail.com

Agenda

- Arduino UNO 板介紹及IDE安裝確認
- 寫第一個程式(使用蜂鳴器)
- ■馬達及馬達控制IC介紹
- 組裝(電源接線+馬達+馬達控制IC)
- 馬達控制程式測試
- 紅外線及其模組介紹
- 紅外線循跡模組安裝與測試
- 紅外線循跡原理及程式說明
- 循跡自走車試跑與調整
- Motoduino 板介紹
- 補充: 手機+藍牙模組控制

Arduino UNO 板及IDE安裝確認

Arduino UNO 板介紹

Arduino IDE安裝與確認

- 1.下載Arduino IDE (Integrated Development Environment) http://arduino.cc/en/Main/Software 找到下載的壓縮檔並解壓縮到任意資料夾位置後執行
- 2. 安裝USB驅動程式(USB driver)
 - a.下載Arduino IDE後,利用USB將Arduino和PC相連接後,螢幕上會出現安裝驅動程式畫面。
 指定驅動程式安裝路徑
 (arduino資料夾裡 ->[drivers] 目錄,執行安裝即可)
 - b.開始->控制台->硬體->裝置管理員->連接埠(或其他) 按右鈕->更新驅動程式

寫第一個程式(使用蜂鳴器)

busser | Arduino 1.0.5 00

File Edit Sketch Tools Help

+

busser§	
<pre>const byte Buzzer = 10; //</pre>	蜂鳴器的接腳 D10
void setup() {	
<pre>pinMode(Buzzer,OUTPUT);</pre>	
// Do : 262 ; 523	
// Re : 294 ; 587	
// Mi : 330 ; 659	
//Fa:349 ; 698	
// So : 392 ; 784	
// La : 440 ; 880	
// Si : 494 ; 988	
<pre>tone(Buzzer, 392, 500);</pre>	// 發出So音調頻率,維持500ms
<pre>delay(500*1.3);</pre>	// 延遲 500*1.3 ms
<pre>tone(Buzzer, 330, 500);</pre>	// 發出Mi音調頻率,維持500ms
<pre>delay(500*1.3);</pre>	// 延遲 500*1.3 ms
<pre>tone(Buzzer, 330, 500);</pre>	// 發出Mi音調頻率,維持500ms
<pre>delay(500*1.6);</pre>	// 延遲 500*1.6 ms
<pre>tone(Buzzer, 349, 500);</pre>	// 發出Fa音調頻率,維持500ms
<pre>delay(500*1.3);</pre>	// 延遲 500*1.3 ms
<pre>tone(Buzzer, 294, 500);</pre>	// 發出Re音調頻率,維持500ms
<pre>delay(500*1.3);</pre>	// 延遲 500*1.3 ms
<pre>tone(Buzzer, 294, 500);</pre>	// 發出Re音調頻率,維持500ms
<pre>delay(500*1.3);</pre>	// 延遲 500*1.3 ms
}	
<pre>void loop() {</pre>	

直流馬達及馬達控制IC介紹

直流馬達及馬達控制IC介紹

直流馬達基本架構

一般馬達的基礎結構可劃分為機殼、定子、轉子(電樞)等三個部分,將定子固定在機殼上後,透過通電後磁場的改變來驅動轉子轉動,而微型馬達通常轉子扭矩極小而轉速極高,則可加裝減速機(齒輪箱)來降低轉速及提升輸出的扭矩(力),馬達的基礎結構如圖所示:

改變馬達直流電壓的大小及其極性,便可改變速度和轉向, 故是最適於做速度控制用之馬達。

直流馬達方向控制原理

圖 4-3 H 橋馬達控制電路動作原理

直流馬達控制IC TA7291

表 4-1 TA7291	接腳功能對照表
--------------	---------

-		
腳號	符號	功能描述
1	IN2	輸入控制端2
2	V _{CC}	控制電路的電源(5V)
3	OUT2	輸出端 2
4		無連接(No Connect)
5	GND	接地端
6	Vs	驅動馬達的電源
7	OUT1	輸出端1
8	V _{ref}	速度控制的參考電壓
9	IN1	輸入控制端1

(b)內部電路方塊圖

表 4-2 TA7291S 輸入端的控制模式

輸	へ	輸出		描式
IN1	IN2	OUT1	OUT2	任人
0	0	高阻抗	高阻抗	停止
0	1	L	Н	反轉/正轉
1	0	Н	L	正轉/反轉
1	1	L	L	剎車

圖 4-5 直流馬達控制電路

馬達控制測試(Motor_Test_by_serial_port.ino)

紅外線感測器之應用

■ 自走車—循線感測器

■利用反射式紅外線感測器達成循跡動作

10 10 4 CM

電路裝配—紅外線循跡感測器

TCRT5000的操作及連接方式

IR循跡感測器接線方式

■ IR循跡感測器與底板接合後需靠近地面

<=2cm感测效果較佳

- 1.疊冰棒棍再用束線帶與IR感測器結合後用魔術帶接底板 2.底板鑽孔後用螺絲固定IR感測器 (1,2均可)
- IR感測器V+(5V)端接至麵包板再接至UNO的5V
- IR感測器G(GND)端接至麵包板再接至UNO的GND
- 右IR感測器S端接Pin 7
- 左IR感測器S端接Pin 8

IR感應距離調整

■ 下載 IR_CAR. ino 程式

- 先不接Vin(電池)
- 手指或紙片靠近IR 約2cm指示燈亮
 移開後指示燈滅
 若指示燈不正確
 請用小一字起子
 調整感應靈敏度

圖 4-13 循跡感測器的環境光調整

循跡原理-3

左邊**IR**壓線 車身偏右 決策:左轉修正

循跡自走車試跑與調整

- 下載 IR_CAR.ino 程式
- 接上Vin(電池)
- 若車速過慢或快請修改程式:
 SP_R=170; //右輪範圍150~255
 SP_L=170; //左輪範圍150~255
- 若車身易偏離跑道請確認:
- 1.IR感應器在黑色跑道上方時指示燈滅(白色上方亮)
- 2.調整兩個感應器距離略大於黑色跑道寬度
- 3.左右IR控制線是否接反

motoduino為台製的特有Arduino(ATMEGA328),其將直流馬達驅動晶片和 Arduino整合在一塊,另外留了藍芽模組的插座,省去了接線的麻煩.

Motoduino板介紹

motoduino用來控制2個直流馬達的腳位分別為D5+D8、 D6+D7兩組,用來做方向及轉速的控制,以下為簡單示意:

	決定方向	決定轉速
馬達1	D8 值=true 順時針 值=false 逆時針	D5 值0~255
馬達2	D7 值=true 順時針 值=false 逆時針	D6 值0~255

Motoduino板IR_CAR

手機+藍牙模組控制

<mark>排針腳位説明</mark> PIN1 GND PIN2 3.3V PIN3 5V PIN4 TXD PIN5 RXD PIN6 KEY

藍芽模組操作

A. 手機先安裝利基app程式: innoSCar.apk 載點: <u>https://app.box.com/s/ukuur9tn062bfiqeqorp</u>

B. Arduino_UNO 端:

- 1. 不接電源
- 2. 接藍牙於麵包板(VCC接5V, GND接GND; TXD接Pin3, RXD接Pin4)
- 3. 接USB線到電腦
- 3. 下載 BT_For_UNO_CAR. inb 檔
- 5. 此時藍牙燈快速閃爍等待與手機配對
- C.手機端:
 - 1.掃描藍芽Connect Device (Scan)
 - 2.Device名稱: HC-06
 - 3.ID碼=1234

4. 打開app程式Connect上藍牙,此時燈閃爍變慢後開始遙控車子

